

#### LA-UR-16-29084

Approved for public release; distribution is unlimited.

Title: (U) TA-55 and Sigma Overview

Author(s): Spearing, Dane Robert

Intended for: Facility overview presentation for visiting agencies.

Issued: 2016-11-30



# (U) TA-55 & Sigma Overview







Dane Spearing (NEN-1)

December 7, 2016

- Los Alamos
NATIONAL LABORATORY

— EST.1943 —

Reviewed by: Dane Spearing, NEN-1 Date: 29 November 2016



#### TA-55 – Plutonium Facility (PF-4)





#### **Mission Statement**

Managed by the Plutonium Science and Manufacturing Directorate (AD-PSM), the TA-55 Plutonium Facility (PF-4) provides world-class, safe, secure, and reliable special nuclear material (SNM) research, process development, technology demonstration, and manufacturing capabilities that support the nation's defense, energy, and environmental needs.



### **TA-55 History**



The red arrow points to the plutonium processing building, known as Building D, in the original war-time tech area. Ashley Pond, seen in the upper right of the photo, is still the centerpiece of downtown Los Alamos.

1943 – 1945: Pu Processing Building (Building D) near downtown Los Alamos



Plutonium operations moved to DP Site in 1945.

1945 – 1978: Pu operations were housed at DP-Site on Los Alamos mesa.

1978 - Present: The Plutonium Facility at TA-55

PF-4 is the "youngest" plutonium facility in the US, and is currently the only active Category I Pu processing facility in the nation.



# **Plutonium**



Figure A9. Oxidation states of Pu

Pu(VI)

Pu(VII)

Pu in solution

Pu oxide

### Plutonium – a strange material indeed

Los Alamos National Laboratory



#### Plutonium: "Most Toxic Substance Known to Man"???

|          | Substance                | Lethal Dose (mg) | Death In        |
|----------|--------------------------|------------------|-----------------|
| Ingested | botulism toxin           | 0.00005          | hours to days   |
|          | nicotine                 | 60-100           | seconds to days |
|          | aflatoxin (in mushrooms) | 0.01             | hours to days   |
|          | aconitin (in flowers)    | 1-2              | hours           |
|          | strychnine               | 100-200          | hours           |
|          | cyanide                  | 200              | minutes         |
|          | plutonium                | 6000             | > 15 years      |
|          |                          |                  |                 |
| njected  | snake poison             | 0.005-1          | hours to days   |
|          | plutonium                | 2                | > 15 years      |
|          |                          |                  |                 |
| Inhaled  | Nerve gas                | 1                | hours           |
|          | Cadmium vapors           | 90               | hours           |
|          | plutonium                | 5                | > 15 years      |

# Pu Safety: Defense in Depth



#### **PF-4 Functional Areas**



#### PF-4 is organized into 4 functional areas:

400 Wing: Aqueous Processing

300 Wing: Casting and Machining

100 Wing: Pu-Oxide Production & Materials Science

200 Wing: Heat Source Production

#### **Fact Sheet**

Opened in 1978 160,000 sq ft (three floors) 70,000 sq ft processing space ~450 gloveboxes/hoods



## 400 Wing: Aqueous Processing

Purpose:

Los Alamos National Laboratory

Pu recovery, reprocessing, & refining

- Capabilities:
  - Nitric acid dissolution
  - Cl-based recovery
  - Direct oxide reduction
  - Am removal
  - Electrorefining







**Direct Oxide Reduction** 

Pu Oxide





Pu metal



# 300 Wing: Pu Casting and Machining

#### **Dedicated to:**

- Pu Casting
- Pu Machining
- Pit Fabrication



### 100 Wing: Oxide Production and Materials Science

 Advanced Recovery and Integrated Extraction System (ARIES) – "swords to plowshares"

MOX fuel pellet research

- Pu metallography
- Pu materials science





Plutonium metallograpy, microscopy, and metallographic analysis



**MOX Fuel Pellets** 

# 200 Wing: <sup>238</sup>Pu Heat Source Production

- Started <sup>238</sup>Pu for artificial heart program
- Missions include:
  - Cassini mission to Saturn
  - Martian rovers



**Curiosity Rover** 



Isotopic Fuels
Impact Tester (IFIT)



<sup>238</sup>PuO<sub>2</sub> pellet

Radioisotope Thermoelectric Generator (RTG)



### **TA-55 Summary**

#### PF-4 is a unique resource for US plutonium programs:

- Basic design is flexible and has adapted to changing national needs
- Robust facility with strong safety and security implementation
- Supports a variety of national programs
- Will continue for many years into the future



# Sigma Overview

Handling everything from Hydrogen to Uranium







#### Sigma Fact Sheet

Opened and in continuous operation since 1958.

 Handle all elements between hydrogen and uranium on the periodic chart, in many forms (e.g. - metals, ceramics, solutions)

Prototyping and characterization facility with a full suite of capabilities

including:

- Foundry

- Forming- Powder Metallurgy

- Welding and Joining
- Chemical Analysis
- Microstructural Characterization
- Corrosion
- -Electrochemistry/Electroplating



 200,000 sq ft integrated prototyping, testing and characterization facility

### Sigma Division – Core Uranium Capabilities

Modeling and Validating Performance:
Constitutive Mech. Prop.

Fabrication:
Uranium Components for
Hydrodynamic
Experiments



Synthesis: Uranium Foundry



# **Metals Forming and Process**



### **Metals Additive Manufacturing**



Full suite of metals additive manufacturing capabilities for exploring and developing state-of-the-art part fabrication.

Los Alamos National Laboratory

# Casting





Vacuum induction melting

#### **Vacuum Arc Remelt**

- Configured for melting reactive metals
- Designed and build by Retech, installed in 1983
- 10 kA power supply
- 2.5", 3.5", 5", 6", 6.25" and 8.5" Ø x
   24" crucibles; limited to 400 kg
- Magnetic stirring up to 90 G
- Highly instrumented including load cell and video recording; instrumented crucibles (temperature and current partitioning)



### **Welding and Joining**

#### **Expertise Welding and Brazing:**

- Plutonium and Uranium
- Beryllium
- Copper and copper alloys
- High and Low Alloy Steel
- Tool Steel
- Stainless Steel (ferritic, austenitic, duplex, super duplex)
- Refractory Metals (W, Mo, Ta)
- Titanium, Vanadium, Niobium, Aluminum



Stainless Steel
Pulsed Laser Weld



# **Machining & Inspection**





- Metals
- Ceramics
- Graphite



# **Plating and Cleaning**



The only large volume plating baths in the DOE complex.

### **Sigma Summary**

- Long term service to the Nation (nearly 60 years!)
- Flexible authorization basis to handle almost the entire periodic table
- Wide breadth of prototyping and characterization capabilities
- Integrated program and line management

